Bayesian Non-parametric Analysis of Stock-Recruitment Relationships

نویسندگان

  • Stephan B. Munch
  • Athanasios Kottas
چکیده

The relationship between current abundance and future recruitment to the stock is fundamental to managing fish populations. However, many different recruitment models are plausible and the data are insufficient to distinguish among them. Although nonparametric methods may be used to circumvent this problem, these are devoid of biological underpinnings. Here, we present a Bayesian nonparametric approach that allows straightforward incorporation of prior biological information and use it to estimate several fishery reference points. We applied this method to artificial data sets generated from a variety of parametric models and compare the results with the fit of Ricker and Beverton–Holt models. We found that the Bayesian nonparametric method fit the data nearly as well as the true parametric model and always performed better than incorrect parametric alternatives. The estimated reference points agree closely with true values calculated for the underlying parametric model. Finally, we apply the method to empirical data for lingcod (Ophiodon elongatus) and several salmonids. Since this method is capable of reproducing the behavior of any of the parametric models and provides flexible, data-driven estimates of stock–recruitment relationships, it should be of great value in fisheries applications where the true functional relationship is always unknown. Résumé : La relation entre l’abondance actuelle et le recrutement futur du stock est d’importance capitale dans la gestion des populations de poissons. Plusieurs modèles de recrutement sont cependant plausibles et les données sont insuffisantes pour les distinguer. Bien que des méthodes non paramétriques puissent servir à résoudre le problème, celles-ci ne possèdent pas de fondement biologique. Nous présentons ici une méthode bayésienne non paramétrique qui permet une inclusion directe des renseignements biologiques a priori et nous l’utilisons pour estimer plusieurs points de référence halieutiques. Nous appliquons la méthode à des séries de données artificielles générées par divers modèles paramétriques et comparons les résultats à l’ajustement des modèles de Ricker et de Beverton–Holt. La méthode non paramétrique bayésienne s’ajuste aux données presque aussi bien que le véritable modèle paramétrique et elle fonctionne toujours mieux que les modèles de rechange paramétriques incorrects. Les points de référence estimés correspondent de près aux valeurs réelles calculées par le modèle paramétrique sous-jacent. Nous appliquons enfin la méthode à des données empiriques sur la morue-lingue (Ophiodon elongatus) et plusieurs salmonidés. Puisque la méthode peut reproduire le comportement de tous les modèles paramétriques et fournir des estimations des relations stock–recrutement flexibles et basées sur les données, elle peut s’avérer d’une grande utilité dans les applications aux pêches dans lesquelles les véritables relations fonctionnelles restent toujours inconnues. [Traduit par la Rédaction] Munch et al. 1821

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A prior for steepness in stock-recruitment relationships, based on an evolutionary persistence principle

Priors are existing information or beliefs that are needed in Bayesian analysis. Informative priors are important in obtaining the Bayesian posterior distributions for estimated parameters in stock assessment. In the case of the steepness parameter (h), the need for an informative prior is particularly important because it determines the stock-recruitment relationships in the model. However, sp...

متن کامل

Stock price analysis using machine learning method(Non-sensory-parametric backup regression algorithm in lin-ear and nonlinear mode)

The most common starting point for investors when buying a stock is to look at the trend of price changes. In recent years, different models have been used to predict stock prices by researchers, and since artificial intelligence techniques, including neural networks, genetic algorithms and fuzzy logic, have achieved successful re-sults in solving complex problems; in this regard, more exploita...

متن کامل

Time Series Models in Fish Recruitment - a Journey from Classical Statistics to Dynamic Models and Bayesian Forecasting

C.M. O'Brien CEF AS Lowestoft Laboratory Pakefield Road, Lowestoft Suffolk NR33 ORT United Kingdom fax: +441502513865 e-mail: [email protected] The investigation of stock-recruitment (S-R) relationships can result in functional models that are appealing when depicted in 2-dimensions as the level of recruitment versus spawning stock biomass. Translation of a functional S-R model to the thir...

متن کامل

The relationship between Neural Networks and DEA-R (Case Study: Companies Stock Exchange)

   Evaluate the performance of companies on the Stock Exchange using non-parametric methods is very important. DEA and DEA-R with the strategies for piecewise linear frontier production function and use of available data, assess the stock company. In this study, using a neural network algorithm DEA and DEA-R is suggested to classify the first companies in the stock exchange; Secondly, using the...

متن کامل

Assessing significance [JF 20]

With the exception of Bayesian analysis, phylogenetic inference procedures typically identify a best estimate of phylogenetic relationships, a so called point estimate of the phylogeny. However, the point estimate is often relatively uninteresting in itself unless we have some measure of its reliability. This lecture will be about techniques for examining the robustness or significance of the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003